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ABSTRACT
We present a method to reconstruct dense 3D points from
small camera motion. We begin with estimating sparse 3D
points and camera poses by Structure from Motion (SfM)
method with homography decomposition. Although the es-
timated points are optimized via bundle adjustment and gives
reliable accuracy, the reconstructed points are sparse because
it heavily depends on the extracted features of a scene. To
handle this, we propose a depth propagation method using
both a color prior from the images and a geometry prior from
the initial points. The major benefit of our method is that we
can easily handle the regions with similar colors but different
depths by using the surface normal estimated from the initial
points. We design our depth propagation framework into the
cost minimization process. The cost function is linearly de-
signed, which makes our optimization tractable. We demon-
strate the effectiveness of our approach by comparing with a
conventional method using various real-world examples.

Index Terms— Structure from motion, Small baseline,
Depth propagation

1. INTRODUCTION

Estimating a depth map from multiview images is a major
problem in the computer vision field since the depth map
plays an important role in many applications such as scene
understanding and photographic editing. The most represen-
tative approach is SfM [1] which estimates 3D points and
camera poses at the same time. Moreover, bundle adjust-
ment [2] optimizes both the 3D points and camera poses ac-
curately. Although the solution is theoretically optimal, when
the camera baseline is too small, the metric depth error in-
creases quadratically even with small errors in disparity [3].

Various attempts in computational photography have been
made to measure depth information of a scene without cam-
era motion. In [4, 5, 6], modifications of camera apertures for
robust depth from defocusing were proposed as an alternative
way to compute depth maps. Another approach is by light-
field photography which uses an angular and spatial informa-
tion of incoming light ray in an image domain. This allows
to obtain multi-view images of a scene in a single shot [7, 8],
and the multi-view images are used for depth map estima-
tion [9, 10, 11]. Although these recent progresses of compu-
tational photography show alternative ways to compute depth
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Fig. 1: Result comparison. (a) Depth map by [12]. (b) 3D
point cloud from (a). (c) Our depth map. (d) 3D point cloud
from (c).

map, they are not available in practice because they require
either camera modification or loss of image resolution.

Recently, Yu and Gallup [12] show that 3D points can be
reconstructed from multiple views via an accidental motion
caused by hand shaking or heart beating. It has the potential
to overcome the limitations of coded aperture and light-field
by capturing a short video without large movement. Since the
baseline between consecutive image sequences is narrow, the
camera poses at each view can be initialized as identical and
can be used for the bundle adjustment. Although the under-
lying assumption is reasonable, the depth map and 3D point
cloud in Fig. 1-(a), (b) show inaccuracy in the results because
of unreliable sparse 3D points, which is unsatisfactory for the
high-quality 3D modeling.

In this paper, we target to obtain an accurate 3D point
cloud as well as a depth map from small motion. First, we
use SfM to estimate initial sparse 3D points and camera poses
from the small motion. In contrast to [12], our method pro-
vides a good initial solution of the camera poses by homog-
raphy decomposition for accurate sparse 3d reconstruction.
For dense 3D reconstruction, we propose a depth propagation
method using both a color prior from the images and a geom-
etry prior from the initial points while the conventional prop-
agation method [13] uses only a color prior. Our depth prop-
agation is designed into the linear cost minimization frame-
work, which effectively improves the depth quality as shown
in Fig. 1-(c), (d).
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Fig. 2: Feature handling. (a) Features on moving objects. (b)
Feature removal - Stone [12] : 1920 × 1080

2. PROPOSED METHOD

In this section, we describe our overall dense 3D reconstruc-
tion framework for tiny baseline images. Our system is simi-
lar to the 3D reconstruction from accidental motion proposed
in [12]. The overall procedure consists of feature extraction,
initial sparse 3D reconstruction, and dense 3D reconstruction.
We improve the performance in every step on [12], and depth
propagation in Section 2.2 which is the most significant im-
provement in this paper.

2.1. Structure from small motion

This section describes the way to extract reliable features and
reconstruct 3D points for small motion precisely. The key
observation is homography between reference view and the
other views.
Feature extraction It is important to extract and match fea-
tures precisely for narrow baseline multiview. If there are
some unreliable feature matchings and features on moving
objects, it causes significant error and should be removed.
[12] tracked corner features by Kanade-Lucas-Tomasi (KLT)
tracker [14] and removed feature outlier by maximum color
gradient difference. It can only handle features with high lo-
calization error, but not features on moving objects. We filter
out the features on moving objects by RANSAC [15] for the
homography as shown in Fig. 2. Homography H for each
image is computed by matched feature points and homogra-
phy outliers can be detected by RANSAC. If the features are
classified as outliers more than m times, we regard them as
features on moving objects.
Sparse 3D reconstruction The key idea of 3D reconstruc-
tion from small motion is to directly apply bundle adjustment
with approximated initial depth and camera poses. [12] as-
sumed that the identity matrix for rotation matrix R, zero
translation T , and randomly assigned depth for initial depth d
are good initializations for bundle adjustment input. However,
the initial parameters are rough approximations that they are
not suitable for our purpose which is computing reliable 3D
points. We propose to set initial camera poses as the decom-
position of homography [16]. Homography H is composed
as:

H = K(RT +
RTTnT

d
)K−1, (1)

Dataset Stone (Fig. 1) Wall (Fig. 4) Shop (Fig. 5)
[12] 0.038 0.308 0.749

Proposed 0.003 0.094 0.072

Table 1: Initial average reprojection errors comparison be-
tween the conventional [12] and proposed initial camera poses
(Unit : pixel).

where K and n are camera intrinsic parameter and surface
normal. Even though the decomposed rotation matrix R and
translation matrix T with unknown normal vector n and depth
d are not precise camera poses, they reduce initial reprojec-
tion error leading to well refined camera poses and 3D points.
Thus decomposed camera poses can be reliable initial cam-
era poses for bundle adjustment. Table 1. represents the ini-
tial projection error comparison between rough initial camera
poses and decomposed initial camera poses. Initial reprojec-
tion errors of our initial camera poses are less than that of the
conventional method, and more accurate sparse points can be
obtained.

With reliable initial parameters, bundle adjustment suc-
cessfully refine depth and camera poses. The cost function
of bundle adjustment is the L2 norm of the reprojection error
defined as:

F =

NI∑
i=1

NF∑
j=1

||pij − π(K(RiPj + Ti))||2, (2)

where NI and NF are the number of images and features.
Matrix Ri and Ti are camera rotation and translation for each
view point i. World coordinates Pj = dj [x1j , y1j , 1] for each
feature point j are the depth dj multiplication with normal-
ized image coordinates pij = [xij , yij ] of reference view. The
function π : R3 → R2 is the projection function from 3D to
2D coordinates. The cost function in Eq. (2) is optimized with
Levenberg marquardt (LM) algorithm [17].

2.2. Depth propagation

This subsection describes a method to propagate the sparse
depth points initially estimated in Sec. 2.1 into dense depth.
Generally, depth propagation using a color cue [18, 19, 13] is
frequently used, but there are many cases where crucial arti-
facts can occur, especially, in the region where neighboring
pixels with similar color have different depth. To handle this
unreliability, we propose a novel optimization method. We
design our propagation method minimizing cost function de-
fined as:

E(D) = Ec(D) + λEg(D), (3)

where D is the optimal depth. Ec and Eg are color and ge-
ometry terms with regularization parameter λ.
Color consistency A color consistency term is designed
based on [13] . We assume that the scene depth field is al-
ways piecewise smooth. The main idea is that a similar depth
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Fig. 3: Normal vector estimation. (a) Reference image with
features. (b) Sparse 3D reconstruction. (c) Sparse normal
vectors. (d) Normal map.

value tends to be assigned to an adjacent pixel with high color
affinity. The cost function for color is defined as:

Ec(D) =
∑

p∈Iref

(
Dp −

∑
q∈N8(p)

wc
pqDq

)2

, (4)

where q is the 8 neighbors of p which belong to pixels in
the reference image Iref . The color similarity weight wc

pq

between pixel p and q in lab color space is defined as

wc
pq =

1

Nc
exp

(−|I labp − I labq |
γc

)
, (5)

where Nc is the normalization factor which makes the sum of
8-neighboring wc

pq equal to one and γc is the strength param-
eter for similarity measure which is manually tuned.
Geometric consistency We assume that a normal vector at
point p is perpendicular to vectors from point p to adjacent
sparse control points q on the same plane. The geometry term
Eg is defined as the sum of the inner products between nor-
mal vector at point p and vectors pointing to adjacent sparse
control points q.

Eg(D) =
∑

p∈Iref

∑
q∈Gw(p)

wg
pq|np · (DpXp −DqXq))|, (6)

where q is the set of sparse control points Gw(p) at the cen-
ter p within the 2D local window lw. The normalized image
coordinate Xp and the normal vector np are represented by
[xp, yp, 1] and [ap, bp, cp] at the pixel p, respectively. Normal
vector np is computed by plane fitting in advance. A plane
can be fit using adjacent sparse control points in 3D space and
the fitted plane estimates the adjacent normal vectors. Algo-
rithm 1. shows the normal vector estimation step. To ensure
sparse points q are on the same plane with point p, the normal
similarity measure wg

pq between points p and q is defined as

wg
pq =

1

Ng
exp

(
−(1− np · nq)

γg

)
, (7)

Algorithm 1 Normal vector estimation

Nd ← The number of adjacent sparse control points within
a 3D sphere with the radius rd
if Nd < 2 then

Skip to calculate normal vectors
else

Compute normal vectors {n} by plane fitting
[U,D, V ] = svd(n′n)
Refined normal vectors← First column of U

end if
Normal vector propagation by color energy function

where Ng is the number of sparse control points within local
window lw and γg controls the strength of similarity measure.
It measures how much the normal vectors of p and q are cor-
related.
Linear equation Our cost minimization is efficiently solved
by the linear equations Ax = b. To find the optimal solution
of the color energy function, we solve OEc(D) = 0 which is
defined as:

OEc(D) = (I −W c)D, (8)

where I is the M ×M matrix (M is the number of pixels)
and W c is the pairwise color similarity (wc

pq) matrix. D is a
one dimensional vector that we optimize.
For the geometry energy function, we derive from (6),∑

p∈Iref

∑
q∈Gw(p)

wg
pqDp − spq = 0, (9)

where spq = wg
pqDq

apxq + bpyq + cp
apxp + bpyp + cp

. (10)

and we obtain matrix form as:

W gD − S = 0, (11)

whereW g is theM×M the pairwise normal similarity (wg
pq)

matrix and S is the pairwise element of spq .
Both terms are combined with a regularization term λ :

At(p, q) =

{
I(p, q) p ∈ G;

((I −W c) + λW g)(p, q) p /∈ G. (12)

bt(p) =

{
Gp p ∈ G;
λSp p /∈ G. (13)

3. EXPERIMENTAL RESULTS

The proposed algorithm is carried out with the parameters as
follows. We set both strength of similarity measure γc and γg
as 0.01 and use 49 × 49 support window lw. The radius rd
is calculated by dividing the initial depth over 20. To eval-
uate the performance of the proposed algorithm, we conduct
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Fig. 4: Experiment Result - Wall [12] : 1920 × 1080. (a) Depth map. (b) Overall 3D point cloud. (c) Enlarged box of (b). (d)
Mesh without texture mapping; First row : Yu and Gallup [12], Second row : conventional propagation, Third row : proposed
propagation.

(a) (b) (c) (d) (e)

Fig. 5: Result of own dataset - Shop : 1296 × 728. (a) Reference image. (b) Depth map. (c) Mesh with texture mapping. (d)
Enlarged box of (c). (d) Mesh without texture mapping.

experiments using datasets provided by the author1 (Fig. 1-4)
and our own dataset (Fig. 5). To verify the effectiveness of our
initial camera pose estimation, we compare our result with the
results obtained from [12] and they are shown in the 1st and
3rd rows of Fig. 4. As expected, our dense reconstruction
result has less artifacts and more sense of reality. Further-
more, we compare our novel depth propagation method with
the conventional method shown in the 2nd and 3rd rows of
Fig. 4, respectively. We show detailed 3D point cloud and
mesh in Fig. 4(c)-(d). While the conventional depth propa-
gation method makes a lot of discontinuity across the bricks,
the proposed method continuously propagates the depth val-
ues, which reconstructs the overall 3D points more reliably.

Fig. 5 is the result from our own dataset taken by Can-
non EOS60D. We take 90 frames for 3 seconds with less than
10mm translation. The depth range of our dataset is from 1m
to 10m. As shown in Fig. 5(b)-(c), the overall depth range
is accurately reconstructed with our method. The details of
the 3D model are represented in Fig. 5(d)-(e). Supplemen-

1http://yf.io/p/tiny/

tary video and high-resolution results of various outdoor and
indoor scenes are available online.

4. CONCLUSION AND DISCUSSION

We have presented a novel method to reconstruct initial sparse
3D points and propagate them into dense 3D structure under
narrow-baseline, multi-view imaging setup. By using features
with less localization errors and more reliable initial camera
poses, more accurate sparse 3D points were obtained. Fur-
thermore, we were able to achieve better dense 3D points by
solving simple linear equations. In the future, we will try to
improve our method robust to motion and depth range by us-
ing additional sensors in a cell-phone or DSLR, such as gyro-
sensor.

5. ACKNOWLEDGEMENT

This research is supported by the Study on Imaging Systems
for the next generation cameras funded by the Samsung Elec-
tronics Co., Ltd (DMC R&D center) (IO130806-00717-02).

4163



6. REFERENCES

[1] Richard Hartley and Andrew Zisserman, Multiple view
geometry in computer vision, Cambridge university
press, 2003.

[2] Bill Triggs, Philip F McLauchlan, Richard I Hartley, and
Andrew W Fitzgibbon, “Bundle adjustmenta modern
synthesis,” in Vision algorithms: theory and practice,
pp. 298–372. Springer, 2000.

[3] David Gallup, J-M Frahm, Philippos Mordohai, and
Marc Pollefeys, “Variable baseline/resolution stereo,”
in Proc. of Computer Vision and Pattern Recognition
(CVPR), 2008.

[4] Changyin Zhou, Stephen Lin, and Shree K Nayar,
“Coded aperture pairs for depth from defocus and defo-
cus deblurring,” Int’l Journal of Computer Vision, vol.
93, no. 1, pp. 53–72, 2011.

[5] Paul Green, Wenyang Sun, Wojciech Matusik, and
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