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Abstract

Unsupervised image clustering is a chicken-and-egg
problem that involves representation learning and cluster-
ing. To resolve the inter-dependency between them, many
previous approaches that iteratively perform the two tasks
have been proposed. However, their quality can be easily
degraded by inaccurate intermediate representations and
clusters. To overcome this, we propose ProFeat, a novel
iterative approach to unsupervised image clustering based
on progressive feature refinement. Our approach strictly
divides representation learning and clustering, and main-
tains a dedicated network for the representation, which is
progressively refined using only confident samples from in-
termediate clusters. The strict separation between the two
tasks allows us to more easily maintain the discriminative
power of features and to control the influence of intermedi-
ate clusters in the iterative learning process. We also pro-
pose ensemble-based approach for more robust clustering.
Our experiments demonstrate that ProFeat achieves supe-
rior clustering results compared to previous methods.

1. Introduction
Unsupervised image classification, or image clustering,

infers semantic clusters of images without supervision. As
it can eliminate the burden of manual annotation, unsuper-
vised clustering has recently gained attention as an alterna-
tive to supervised image classification [19, 22, 2, 3, 11, 26,
4]. Unsupervised image clustering involves representation
learning and clustering. High-quality clustering requires
good representations, or features, that reflect the semantic
meaning of data. On the other hand, to learn good represen-
tations, it is essential to exploit semantic information such
as semantic clusters. This inter-dependency makes unsuper-
vised image clustering a chicken-and-egg problem.

To resolve the inter-dependency between representation
learning and clustering, various approaches have been pro-
posed. A popular approach is to alternatingly refine clusters
and representations [22, 4, 2, 3]. Using initial representa-
tions, images are clustered by assigning cluster labels to

images, e.g., using K-means [15, 14], or by sampling im-
age pairs that are likely to belong to the same clusters [4].
Then, representations are refined using either all or confi-
dent samples from the refined clusters as self-supervision.

Despite simultaneous learning of representations and
clusters, previous methods still suffer from the inherent dif-
ficulty of unsupervised image clustering. First, inaccurate
representations may result in semantically dissimilar im-
ages close to each other in the feature space, and eventually
lead to inaccurate clusters. Second, inaccurate intermediate
clusters may adversely affect the representation learning.
Once semantically different images are accidentally clus-
tered together, the following learning process easily fails to
learn to discriminate between them.

In this paper, we present ProFeat, a novel approach to
unsupervised image clustering based on progressive feature
refinement. Similarly to previous iterative methods [22, 4,
2, 3], our approach alternates between representation learn-
ing and clustering to improve both. To overcome the afore-
mentioned limitations, our approach is designed with two
key ideas. First, unlike previous approaches that use a sin-
gle network for both representation learning and cluster-
ing [7, 22], our approach strictly divides the two tasks, and
maintains a network dedicated for image representations.
Second, our approach progressively refines representations
using a small set of confident samples from intermediate
clustering results. To sample confident samples, we also
propose an ensemble approach that samples confident sam-
ples based on the agreement between different models.

Our strategy brings us the following benefits. First, it
allows us to use higher dimensional representations, so we
can more easily maintain the discriminative power of repre-
sentations between different images. Second, it enables the
representation learning to selectively reflect the intermedi-
ate clustering results, while avoiding adversarial influence.
Thanks to these, we can learn high-quality representations,
and achieve state-of-the-art clustering results.

2. Method
In this section, we first present an overview of our itera-

tive framework, and give detailed introduction to each com-



ponent. Finally, we explain our ensemble-based approach.
In the following, we denote our non-ensemble and ensem-
ble models by ProFeats and ProFeate, respectively.

2.1. Overview

Given a set of unlabelled images X = {xi|i =
1, · · · , N}, our goal is to cluster the images into K clusters
so that each cluster consists of semantically close images,
i.e., we want to learn a function f(xi) = yi where yi is
a K-dim. cluster prediction vector such that yi,k ≥ 0 ∀k
and

∑
k yi,k = 1 where yi,k is the k-th element of yi. Our

framework models f(x) as a composition of an embedding
function g and a clustering function h, i.e., f(x) = h(g(x))
where g embeds images into the feature space, while h
clusters the embedded features. Our framework iteratively
learns both g and h by alternatingly performing the repre-
sentation learning and clustering steps. After the iterations,
the final g and h are used for generating final clusters.

2.2. Representation Learning Step

The representation learning step of ProFeats is built
upon the contrastive learning method of SimCLR [5]. This
step learns image representations by maximizing the simi-
larity between images belonging to the same cluster in the
feature space, while minimizing the similarity between im-
ages belonging to different clusters. As clusters are initially
unknown, at the first iteration, we assume that all images be-
long to different clusters, and that different augmentations
of a single image belong to the same cluster.

Specifically, at the first iteration, we randomly sample a
minibatch of B images, and generate two augmented im-
ages of each image in the minibatch, resulting in 2B im-
ages. Pairs of augmented images from the same source im-
ages are treated as positive pairs, while all the other pairs
are treated as negative pairs. We denote the sets of positive
and negative pairs as P andN , respectively, and their union
by Q such that Q = P ∪N . Then, the embedding function
g is trained using a contrastive loss defined as:

Lg = −
∑

(i,j)∈P

log
exp(sim(zi, zj)/τ)∑

(k,l)∈Qi
exp(sim(zk, zl)/τ)

(1)

where sim(·) is a normalized cosine similarity defined as
sim(u, v) = u>v/‖u‖‖v‖. Qi is a subset of Q, which is
defined as Qi = {(i, k)|(i, k) ∈ Q ∀k}. As suggested in
[5], we compute similarity between projected features, i.e.,
zi = p(g(xi)) where p is a projection function that maps
g(xi) to the space where the contrastive loss is applied. p is
defined as a multi-layer perceptron with one hidden layer. τ
is a temperature parameter.

From the second iteration, we refine both g and p by up-
dating P and N using confident samples from the cluster-
ing result from the previous iteration. Specifically, as done

in the first iteration, we randomly sample a minibatch of B
images. From the minibatch, we discard less confident im-
ages whose maximum prediction scores yi = maxk yi,k are
smaller than a pre-defined threshold ts. We denote the set of
the remaining confident images by C. Then, we find all the
image pairs (xi, xj) from C such that yi,k > ts ∧ yj,k > ts
for any k, and include all the pairs of their augmented ver-
sions as positive pairs into P . Using all the other remain-
ing pairs derived from C, we generate N . P also includes
pairs of different augmentations of the same images from
C. Using the updated P and N , we fine-tune g and p by
minimizing Eq. (1). Note that P andN consist of only con-
fident pairs. Thanks to this, g and p can be updated more
accurately as will be shown in Sec. 3.

2.3. Clustering Step

The clustering step learns the clustering function h based
on the representations from the previous step. This step is
built upon SCAN [19], and consists of a semantic clustering
step and an optional fine-tuning step. For higher accuracy
of intermediate clustering results, this step trains not only h
but also an auxiliary embedding function g′, which is ini-
tialized with g from the previous step. g′ is used only for
generating intermediate clusters at the current iteration to
avoid adversarial effect from incorrect clusters.

The semantic clustering step exploits nearest neighbors
to train h. For each xi in X , we find the M nearest neigh-
bors in the feature space learned at the representation learn-
ing step. In our experiments, we use the projected feature
space to find nearest neighbors. We denote the set of the M
nearest neighbors of xi asMi. Then, h and g′ are trained
to predict the same cluster prediction vectors for the image
xi and its neighbors using a loss defined as:

Lh = − 1

N

∑
xi∈X

∑
xj∈Mi

log 〈h(g′(xi)), h(g′(xj))〉 (2)

+λ

K∑
k=1

h′k log h
′
k,

where 〈·〉 is dot product. The second term on the right-
hand side is an entropy term that encourages the predicted
clusters to be uniformly distributed, which is defined as
h′k = 1

N

∑
xi∈X hk(g

′(xi)) where hk(g′(xi)) is the k-th
element of the output vector of h(g′(xi)). λ in Eq. (2) is the
weight for the entropy term.

After the semantic clustering step, we optionally con-
duct a fine-tuning step, which uses self-supervision. In this
step, we sample confident samples xi fromX whose hk(xi)
is larger than a threshold tf for any k. Then, we gener-
ate pseudo-labels y′i whose every element is zero except for
y′i,k = 1. We then fine-tune h using the pseudo-labels with
the cross-entropy loss. We repeat the sampling of confident
samples and fine-tuning until convergence following [19].



Table 1. Performance Comparison with Other Methods.
CIFAR10 CIFAR100-20 STL10

Methods ACC NMI ARI ACC NMI ARI ACC NMI ARI
K-means [21] 22.9 8.7 4.9 13.0 8.4 2.8 19.2 12.5 6.1
SC [24] 24.7 10.3 8.5 13.6 9.0 2.2 15.9 9.8 4.8
Triplets [18] 20.5 - - 9.9 - - 24.4 - -
JULE [23] 27.2 19.2 13.8 13.7 10.3 3.3 27.7 18.2 16.4
AEVB [12] 29.1 24.5 16.8 15.2 10.8 4.0 28.2 20.0 14.6
SAE [16] 29.7 24.7 15.6 15.7 10.9 4.4 32.0 25.2 16.1
DAE [20] 29.7 25.1 16.3 15.1 11.1 4.6 30.2 22.4 15.2
SWWAE [25] 28.4 23.3 16.4 14.7 10.3 3.9 27.0 19.6 13.6
AE [1] 31.4 23.4 16.9 16.5 10.0 4.7 30.3 25.0 16.1
GAN [17] 31.5 26.5 17.6 15.1 12.0 4.5 29.8 21.0 13.9
DEC [22] 30.1 25.7 16.1 18.5 13.6 5.0 35.9 27.6 18.6
ADC [8] 32.5 - - 16.0 - - 53.0 - -
DeepCluster [2] 37.4 - - 18.9 - - 33.4 - -
DAC [4] 52.2 40.0 30.1 23.8 18.5 8.8 47.0 36.6 25.6
IIC [11] 61.7 51.1 41.1 25.7 22.5 11.7 59.6 49.6 39.7
Han et al. [9] 81.0 - - 35.3 - - 66.5 - -
SCAN [19](Avg) 87.6 ± 0.4 78.7 ± 0.5 75.8 ± 0.7 45.9 ± 2.7 46.8 ± 1.3 30.1 ± 2.1 76.7 ± 1.9 68.0 ± 1.2 61.6 ± 1.8
SCAN [19](Best) 88.3 79.7 77.2 50.7 48.6 33.3 80.9 69.8 64.6
ProFeats(Avg) 88.7 ± 0.3 80.1 ± 0.5 77.6 ± 0.8 50.0 ± 1.2 48.4 ± 0.9 32.5 ± 1.0 82.4 ± 0.7 72.8 ± 0.6 68.5 ± 0.7
ProFeats(Best) 89.0 80.7 78.3 51.2 49.7 33.8 83.2 73.4 69.4
ProFeate(Avg) 92.4 ± 0.3 83.5 ± 0.4 83.1 ± 0.6 52.6 ± 1.1 51.3 ± 0.9 35.5 ± 1.2 84.8 ± 0.5 74.6 ± 0.5 71.2 ± 0.8
ProFeate(Best) 92.7 84.3 84.2 54.4 52.1 37.1 85.5 75.2 72.3

2.4. Ensemble Learning

To further improve the clustering quality, we present
ProFeate that adopts the ensemble learning. ProFeate sam-
ples confident samples based on the agreement of differ-
ent models. Specifically, at each iteration, we train mul-
tiple embedding and clustering functions {(ge, he)|e =
1, · · · , E}. Then, in the following representation learning
step, we sample confident samples gathering all the cluster-
ing results from the previous iteration, and generate the set
of positive and negative pairs P andN . We then update the
embedding functions using P and N . Below we describe
the sampling process of P and N in more detail.

First, during the training of each ge, we randomly sample
a minibatch of B images. For each pair of images (xi, xj)
in the minibatch, we inspect whether the pair is likely to be-
long to the same cluster by counting the number of models
that agree that they belong to the same cluster. Specifically,
we define an ensemble-based confidence c(xi, xj) as:

c(xi, xj) =

E∑
e=1

δke,ike,j
(3)

where δ is a kronecker delta function evaluating to 1 if
ke,i = ke,j and 0 otherwise. ke,i is the cluster index with
the largest probability for xi predicted by the e-th model,
defined as ke,i = argmax

k
he,k(ge(xi)). If c(xi, xj) > te

where te is a threshold, we consider them as connected, or
likely to belong to the same cluster. We denote the set of
images with connections by Cx, and the set of connected
pairs by Cp.

We may simply consider all the pairs in Cp as positive
pairs and generate P and N . However, we further prune

away less confident samples for more robust sampling. To
this end, we introduce connection-based thresholding. In
our preliminary experiments, we observed that confident
samples are usually connected with a large number of other
samples. Based on this, for each x in Cx, we count the num-
ber of connections with other images in Cp. If the count
is smaller than a pre-defined threshold tc, we consider x
less confident, and discard x and all the pairs with x from
Cx and Cp, respectively. Using the resulting Cx and Cp, we
generate P and N . Specifically, we augment the images
in Cx as done in Sec. 2.2. Then, we derive positive pairs
of the augmented images from Cp, and negative pairs using
the augmentations of image pairs (xi, xj) such that xi ∈ Cx
and xj ∈ Cx but (xi, xj) /∈ Cp.

The models (ge, he) initially predict different clusters for
the same images due to different initialization of the param-
eters. However, as the iteration goes, they converge to pre-
dict the same cluster for a given image even though the in-
dices of the clusters are different. Therefore, after the final
iteration, we simply keep only one model.

3. Experiments
We implemented both representation learning and clus-

tering steps based on the implementation of SCAN1 [19].
Below, we briefly describe important implementation de-
tails. More details and the source code can be found in our
project webpage2. The embedding function g is modeled
using the ResNet18 network [10] with a d-dim. output layer
after average pooling, where we set d = 512. For p, we use

1https://github.com/wvangansbeke/Unsupervised-
Classification

2Will be available after the acceptance of the paper

https://github.com/wvangansbeke/Unsupervised-Classification
https://github.com/wvangansbeke/Unsupervised-Classification


Table 2. Ablation Study of Our Approaches
Iterative Confident
update samples w/ g′ w/ tc ACC

Baseline (SCAN) 87.6
(a) X 86.9
(b) X X 87.7
(c) X X 88.1

ProFeats X X X 88.7
(d) X X X 89.3

ProFeate X X X X 92.4

two fully-connected layers with 512 and 128 nodes, respec-
tively. We use τ = 0.1. The representation learning step
is implemented using the stochastic gradient descent (SGD)
method. We set the number of SGD iterations to 500 epochs
for the first iteration of ProFeat. We set the learning rate to
0.4 and gradually decrease it to 0.0004 through iterations.
From the second iteration of ProFeat, we run 50 epochs.
We use batch size 512. For ProFeate, we set E = 5 and
te = 5 in all our experiments. We set tc to around half the
average number of images per class in a minibatch.

We evaluate ProFeat using standard datasets: CIFAR10,
CIFAR100-20, and STL10 [13, 6]. For STL10, following
[19], we use both training set and unlabelled image set for
the representation learning at the first iteration. For the other
steps, we use only the training set for training. We set ts to
0.99, 0.99 and 0.95, and tc to 20, 10, and 1 for CIFAR10,
CIFAR100-20, and STL10, respectively. For CIFAR10 and
CIFAR100-20, we set the number of iterations to 10 for both
ProFeats and ProFeate. For STL10, we set the number of it-
erations to 100 and 300 for ProFeats and ProFeate, respec-
tively. We use the optional fine-tuning step in the clustering
step only for CIFAR10 and CIFAR100-20.
Comparison Table 1 compares ProFeat against previous
methods using clustering accuracy (ACC), normalized mu-
tual information (NMI), and adjusted rand index (ARI). All
the values of the previous methods are from their original
papers. The performance of a clustering algorithm depends
on its initialization. Thus, for fairness, for the previous
state-of-the-art method, SCAN [19], we report the average
and best performances and the standard deviation of five dif-
ferently initialized models. We also report the average and
best performances of our models measured using five differ-
ently initialized models. Table 1 shows that ProFeats con-
sistently outperforms all the other methods, which proves
the effectiveness of our progressive feature refinement. Pro-
Feate substantially improves the clustering quality thanks to
the more accurate sampling of confident samples.
Ablation study In Table 2, ‘Iterative update’ means our it-
erative update scheme, i.e., no ‘Iterative update’ performs
only a single iteration of the algorithm. ‘Confident sam-
ples’ indicates whether only confident samples or the entire
images are used for updating image representations. ‘w/ g′’
indicates using the auxiliary embedding function g′ instead
of g. Not using g′ means that the embedding function g is
updated both in the representation learning and clustering

75%
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79%

81%

83%

1 10 20 30 40 50 60 70 80 90 100

AC
C

Iterations

SCAN (avg)
ProFeat_s (avg)

Figure 1. Clustering accuracy with respect to iterations on the
STL10 test set.

steps. ‘w/ tc’ means using the connection-based threshold-
ing for ProFeate. The baseline performs only the first itera-
tion of ProFeats, which is equivalent to SCAN [19].

Table 2(a) shows that naı̈ve iteration between the rep-
resentation learning and clustering steps does not improve
the clustering accuracy. Table 2(b) and (c) show that each
of using only confident samples and the auxiliary embed-
ding function improves the accuracy. This result proves
that restricting the influence of intermediate clusters to the
representation learning is essential for high-quality results.
ProFeats that uses both confident samples and the auxiliary
embedding function achieves the best performance. Finally,
Table 2(d) and ProFeate validate the effectiveness of the en-
semble learning and connection-based thresholding.
Accuracy w.r.t. iterations Fig. 1 shows the clustering ac-
curacy of ProFeats with respect to iterations evaluated on
the STL10 test set. The accuracy continuously increases
as the iteration goes despite some fluctuations, proving that
representation learning and clustering help improve each
other. In the figure, we also plot the average performance
of SCAN [19] for comparison. As SCAN is not an iterative
algorithm, we plot its performance as a line. As shown in
the figure, although the initial performance of ProFeats is
slightly lower due to the randomness of the initialization,
ProFeats starts to outperform SCAN within only a couple
of iterations.

4. Conclusion

This paper presented ProFeat, a novel unsupervised im-
age clustering algorithm, which iteratively performs the
representation learning and clustering steps. To avoid ad-
versarial effect from incorrect intermediate clusters, our al-
gorithm strictly divides the representation learning and clus-
tering, and progressively refines representations using only
confident samples. To robustly sample confident samples,
we also presented an ensemble-based strategy. We experi-
mentally validated each component of ProFeat and showed
that ProFeat achieves the state-of-the-art performance.
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