
Stereo Matching with Color and Monochrome Cameras in Low-light Conditions

Hae-Gon Jeon1 Joon-Young Lee2 Sunghoon Im1 Hyowon Ha1 In So Kweon1

hgjeon@rcv.kaist.ac.kr jolee@adobe.com shim@rcv.kaist.ac.kr hwha@rcv.kaist.ac.kr iskweon@kaist.ac.kr

1 Robotics and Computer Vision Lab., KAIST 2 Adobe Research

Abstract

Consumer devices with stereo cameras have become
popular because of their low-cost depth sensing capability.
However, those systems usually suffer from low imaging
quality and inaccurate depth acquisition under low-light
conditions. To address the problem, we present a new
stereo matching method with a color and monochrome
camera pair. We focus on the fundamental trade-off that
monochrome cameras have much better light-efficiency
than color-filtered cameras. Our key ideas involve com-
pensating for the radiometric difference between two cross-
spectral images and taking full advantage of complemen-
tary data. Consequently, our method produces both an
accurate depth map and high-quality images, which are
applicable for various depth-aware image processing. Our
method is evaluated using various datasets and the per-
formance of our depth estimation consistently outperforms
state-of-the-art methods.

1. Introduction

Stereo camera systems allow us to estimate depth infor-

mation and have many advantages over active range sensors

such as ToF (time-of-flight) cameras and laser scanners.

Stereo cameras are cost-effective and can work in both

indoor and outdoor environments. This is why they have

been widely used in the computer vision and robotics fields

for several decades. Recently, consumer devices having a

stereo camera [2, 4] have been released for depth-aware

image editing applications.

Despite the advantages, estimating accurate depth map

in low-light conditions leads to severe image noise; thus is

still challenging and limits the usefulness of stereo systems.

Although a long exposure time or a flash light may alleviate

the problem, they can induce other imaging problems such

as motion blur or specular reflections [19]. To overcome

these issues, multi-modal and multi-spectral imaging ap-

proaches such as a color and infrared camera pair [16] and

cross-channel matching [26] have been proposed. However,

(a) A pair of color and monochrome images

(b) Estimated disparity map (c) Recovered color image

(d) Image refocusing (e) Image stylization

Figure 1. Given the pair of images (a), we estimate the accurate

disparity map (b) and recover the high-quality color image (c). Our

result is applicable to various depth-aware image processing (d, e).

these approaches require high manufacturing cost and

specialized hardware.

In this paper, we present a stereo matching framework

with a color and monochrome image pair (Fig. 1(a)). Our

system is designed to estimate an accurate depth map

under low-light conditions without additional light sources

(Fig. 1(b)). In order to obtain reliable correspondence,

we exploit the fundamental trade-off between color sens-

ing capability and light efficiency of color cameras and

monochrome cameras, respectively. Because monochrome

cameras respond to all colors of light, they have much better

light efficiency than Bayer-filtered color cameras [7, 3].

In general, image luminance recorded from a color

camera is not consistent with that from a monochrome

camera due to spatially-varying illumination and different

spectral sensitivities of the cameras. This degrades the

performance of stereo matching. To solve this problem,
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we sample appropriate decolorization parameters of a color

image and perform locally adaptive radiometric alignment

and correspondences augmentation iteratively. After esti-

mating a depth map, we recover a high-quality color image

by colorizing the image from a light-efficient monochrome

camera. For accurate colorization, we introduce a local

chrominance consistency measure. Herein, we demonstrate

the superior stereo matching performance over state-of-the-

art methods. In addition, we show our result can be applied

to depth-aware image processing algorithms such as image

stylization and digital refocusing (Fig. 1(c)).

2. Related Work
Our method is related to cross-spectral stereo matching

and colorization. Prior to introducing previous studies, we

refer the reader to [14] for a comprehensive discussion of

stereo matching with radiometric and noise variation.

Cross-spectral stereo matching has been studied exten-

sively to find correspondence between multi-modal and

color-inconsistent stereo images. Heo et al. [12] analyzed

a color formation model and proposed an adaptive nor-

malized cross correlation for stereo matching, that would

be robust to various radiometric changes. This was

extended in [13], which presented an iterative framework

to simultaneously achieve both depth estimation and color

consistency. Pinggera et al. [23] presented depth map

estimation with cross-spectral stereo images, which uses

dense gradient features based on the HOG descriptor [9].

Kim et al. [18] designed a dense descriptor for multi-

modal correspondences by leveraging a measure of adaptive

self-correlation and randomized receptive field pooling.

Holloway et al. [15] proposed an assorted camera array

and a cross-channel point correspondence measure using

normalized gradient cost.

Colorization is a process of adding color channels to a

grayscale image and video. Levin et al. [21] presented

a user-guided colorization method that takes partial color

information from user scribbles and automatically propa-

gates the given seed color to make a complete color image.

Yatziv and Sapiro [30] proposed a fast colorization method

using the geodesic distance between neighboring pixels.

Gastal and Oliveira [10] introduced an edge-aware filter in a

transformed domain and showed a colorization result as one

of its applications. Irony et al. [17] proposed an example-

based colorization based on an assumption that similarly

textured regions have similar colors.

In this study, we focused on simultaneously recon-

structing an accurate depth-map and a noise-free color

image using a color + monochrome image pair. We

achieve this by taking the advantage of our cross-spectral

stereo system. We created a locally adaptive spectral

alignment algorithm that allows us to estimate an accurate

disparity map without complex optimizations for intensity
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(a) (b)

Figure 2. (a) Spectral sensitivity of the color and monochrome

camera [1] used in our prototype stereo system. (b) An example

image pair captured by our stereo system. Note that there is

visible difference of image noise due to the gap of light-efficiency

between two cameras.

equalization. As will be demonstrated in the experimental

section (Sec. 7), our method is highly effective for accurate

disparity estimation and significantly outperforms the state-

of-the-art algorithms [12, 13, 18, 15]. In colorization, most

approaches concentrate on propagating limited numbers of

user-defined seeds, while we have lots of seed pixels with

outliers around occlusion boundaries. To handle this issue,

we introduced a new weighting term to correct inaccurate

seed pixels and successfully recover a high-quality color

image.

Recent work by [7] presented the concept of an alter-

native camera sensor that samples color information very

sparsely. They recover a full color image by propagating

the sparsely sampled colors into an entire image. This

work shares the same philosophy with our work that takes

the advantage of light-efficient monochrome sensors, but

the concept may suffer from color noise that leads to an

erroneous color image. Moreover, we adopt the idea in a

stereo system and obtain an accurate depth-map and a noise-

free color image simultaneously.

3. Stereo System with Color and Mono Cameras
Most color cameras use a color filter array called a

Bayer array to capture color information. The Bayer

array is positioned over the pixels of an image sensor

and separates the incoming light into one of three primary

colors (red, green, or blue) by filtering the light spectra

according to wavelength range. This process is effective

for capturing color information, but it amplifies image noise

under low-light conditions because the array occludes a lot

of incoming light. It may also reduce image sharpness as a

result of using an anti-aliasing filter or optical low-pass filter

to avoid aliasing or moiré artifacts during the demosaicing

process.

Unlike color cameras, monochrome cameras receive all

the incoming light at each pixel and need no demosaicing

process. Therefore, they have much better light efficiency
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Figure 3. The overview of our algorithm. Our method produces the accurate depth map (f) and the high-quality color image (g), while the

baseline stereo matching method with the luminance channels of the input images results in the poor disparity map (a).

and provide shaper images. In Fig. 2, we compare the

imaging quality of a color and a monochrome camera.

The comparison of spectral sensitivity (Fig. 2(a)) and the

example image-pair captured under the same conditions

(Fig. 2(b)) prove the large difference in light efficiency and

image quality between the two types of cameras. That is,

a color + monochrome camera pair is highly suitable for

achieving a noise-free color image in addition to accurate

depth estimation.

4. Overview

Our stereo setup is a kind of cross-spectral system that

includes a color and a monochrome (RGB-W) camera. In

this section, we present an overview of our framework for

the RGB-W stereo setup. Our key ideas are compensating

for the spectral/radiometric difference between RGB-W

images by locally adaptive radiometric alignment, and

aggregating reliable correspondences by robust and noise-

tolerant stereo matching. From these, we are able to utilize

a disparity map to reconstruct high-quality color and depth

images with applications to depth-aware image processing.

Fig. 3 depicts an overview of our framework. To

account for spectral differences between a pair of RGB-W

images, we first decolorize the color input image (Sec. 5.1).

Because two cameras have different spectral sensitivities

and viewpoints, there is no global mapping function that

can explain the radiometric difference between two images

without any assumptions. Moreover, estimation of local

mapping functions is unstable and tends to diverge without

reliable and dense correspondences. Instead, we use a

candidate set of global decolorization functions that serve

to preserve contrast distinctiveness and to suppress noise

amplification simultaneously.

Then, we estimate disparities based on brightness con-

stancy and edge similarity constraints, and each constraint

term is designed to be robust to image noise and non-linear

intensity changes, respectively (Sec. 5.2). Because the

estimated disparity may contain outliers due to radiometric

difference or image noise, we retain reliable correspon-

dences with a left-right consistency check and aggregate

them from all candidate decolorized images.

After that, we have a set of reliable correspondences

and use them to augment additional correspondences by

iterative gain compensation and disparity estimation. Given

the grayscale input and aligned decolorized image, we

match the brightness of the input image to the decolorized

image by estimating a local gain map (Sec. 5.3). Because

our decolorization is performed to preserve the contrast

distinctiveness of a color image, it can capture important

local edges better than the grayscale input image, where

edges may be ambiguous due to the mixing of spectral

information. Therefore, this iterative process provides

increases the number of reliable correspondences.

Last, we fuse the RGB-W stereo input image with the

estimated disparity map and obtain a high-quality color

image (Sec. 6). We show experimental validation and

additional applications of our method in Sec. 7.

5. Stereo Matching with RGB-W Images
5.1. Image Decolorization

A decolorization is a dimension-reduction process that

converts three dimensional data to one dimension in the

same range. Existing decolorization studies [25, 22] mostly

considered contrast preservation and visual distinctiveness.

We propose a decolorization method for our cross-spectral

stereo setup by considering contrast preservation and noise

suppression together.

We assume that a decolorized image Iγ is constructed by

the weighted sum of three color channels of an input color

image I as:

Iγ = ωrIr + ωgIg + ωbIb

s.t. ωr + ωg + ωb = 1, ωr ≥ 0, ωg ≥ 0, ωb ≥ 0, (1)

where Ir, Ig and Ib are three color channels, and ωr, ωg and

ωb are their weighting parameters.

We discretize each of ωr, ωg and ωb with an interval
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(a) Gradient sparsity by L1 norm (b) Normalized sparsity

Figure 4. Decolorized images with two different gradient sparsity

measures.

of 0.1, and make 64 candidate parameter sets Γn where

n ∈ {1, 2, · · · , 64}, because finer discretization produces

indistinguishable differences in output for most cases, as

shown in [25]. Then, we choose a set of appropriate

parameters with contrast preservation and noise suppression

constraints for accurate stereo matching.

Contrast Preservation. Contrast preservation is a key

property in decolorization because it is effective for preserv-

ing rich color information and for reducing the perceptual

difference between color and decolorized images. To

estimate good decolorization parameters, we adopt the

contrast preserving measure in [25], as follows.

To measure the contrast difference between a color

image I and its decolorized image Iγ , which is also robust

to image noise, we reconstruct a color image Ĩγ having

contrast of Iγ by applying the guided filter [11] at each pixel

i as:

Ĩγi = Gi(I, I
γ) =

∑
j

1

|Ω|2wij(I
γ)Ij ,

wij(I
γ) =

∑
k|(i,j)∈Ωk

(
1 +

(Iγi − μk)(I
γ
j − μk)

σ2
k + ε

)
, (2)

where |Ω| is the number of pixels inΩk, ε is a regularization

parameter, μk and σk are the mean and standard deviation of

Iγ in a 5×5windowΩk centered at the pixel k respectively.

Then, we measure a contrast preserving cost Ec(γ) for

each decolorization parameter γ as:

Ec(γ) = ‖G(I, I)− Ĩγ‖1, ∀γ ∈ Γ, (3)

where G(I, I) is the guided output image of the color input

image I with a guidance of itself.

After computing the cost Ec(γ), we linearly interpolate

the scattered data in the Γ space and find the local minima

from the interpolated cost map. We denote the set of

weighting parameters at the local minima as Γ1.

Noise Suppression. Because we consider low-light condi-

tions where images suffer from large noise [8], the contrast

preserving measure is not enough for producing properly

decolorized images. As a complementary measure, we

adopt the normalized sparsity measure, which was origi-

nally proposed for motion deblurring [20].

We use the normalized sparsity measure to estimate

noise amplification during the decolorization process. It is

(a) rgb2gray (b) Only contrast (c) Proposed

Figure 5. Results of stereo matching between a gray reference

image and decolorized images with three different methods: (a)

the “rgb2gray” in MATLAB, (b) the contrast preserving measure

in Eq. (3), and (c) the proposed measure. A detailed description

for the dataset is presented in Sec. 7.1.

defined as:

En(γ) =
‖∇xI

γ‖1 + ‖∇yI
γ‖1

‖∇xIγ‖2 + ‖∇yIγ‖2 , ∀γ ∈ Γ, (4)

where Iγ is the decolorized image with a parameter γ,∇ is

a gradient magnitude of x or y direction, and ‖·‖1 and ‖·‖2
are the L1 and L2 norm, respectively.

The normalized sparsity measure computes the normal-

ized L1 norm of the image gradient which makes it scale-

invariant, while the conventional L1 norm of gradient,

widely used in denoising [27], imposes signal sparsity and

is scale-variant that can be simply minimized by reducing

the entire signal. We denote the set of decolorization

parameters resulting in low normalized sparsity values in

Eq. (4) as Γ2. We empirically took the 20 percent of

parameter subset in Γ as Γ2 for this paper.

Fig. 4 shows the comparison of two sparsity measures.

While the L1 norm fails to select a good parameter because

it favors low-intensity images, the normalized sparsity

chooses a proper decolorized image that adjusts a good

balance between signal power and image noise.

Decolorization parameters. Based on the two measures,

Ec and En, we determine the candidate set of decoloriza-

tion parameters Γd as the intersection of Γ1 and Γ2 (Γd =
Γ1 ∩ Γ2). In our experiment, usually 5∼7 decolorization

parameters were selected through this process.

To validate the effectiveness of our decolorization pro-

cess, we perform stereo matching without post-processing

in Fig. 5. The decolorized image with our parameter

produces a greater number of reliable correspondences than

those with the baselines.

5.2. Disparity Estimation

In stereo matching, the brightness constancy assumption

shows promising results in the presence of strong image
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(a) (b) (c)

Figure 6. Effectiveness of the informative edge measure. (a) Color

image. (b) Conventional gradient map. (c) Informative edge map.

noise because summing over a patch acts as a mean

filter. Edge similarity assumption works well for the case

of nonlinear intensity variations due to camera gain and

changes in gamma [14].

To achieve robust stereo matching results, we combine

two complementary costs; the sum of absolute differences

(SAD) as a brightness constancy measure and the sum of

informative edges (SIE) as an edge similarity measure. Our

cost volume V at pixel x is defined as:

V(x, l) = αVSAD(x, l) + (1− α)VSIE(x, l), (5)

where l represents a cost label and α ∈ [0, 1] is a balancing

parameter between a brightness constancy term VSAD and

an informative edges term VSIE .

The brightness constancy term VSAD is defined as:

VSAD(x, l) =
∑
x∈Ωx

min(|IL(x)− IγR(x+ d)|, τ1), (6)

where Ωx is a 7 × 7 support window centered at x, IL is a

monochrome input image, IγR is a decolorized image from

a color input image, d is a disparity, and τ1 is a truncation

value for robustness.

The informative edges term VSIE is defined as:

VSIE(x, l)=
∑
x∈Ωx

min
(|J(IL(x))−J(IγR(x+d))|, τ2

)
,

s.t. J(I) =
|∑x∈Ωx

∇I(x)|∑
x∈Ωx

|∇I(x)|+ 0.5
, (7)

where τ2 is a truncation value. We adopt J as a criterion

to represent informative edges, which was introduced in

deblurring research [28]. In the definition of J , the sum

of signed gradients in the numerator cancels out image

noise, while the sum of absolute gradient magnitudes in the

denominator, computes how strong the edges are, around a

pixel location. The constant value (0.5) prevents production

of a large edge response in homogeneous regions. The

informative edge response J always results in a normalized

value in the range of [0, 1], and is robust to nonlinear

intensity changes and image noise. Therefore, we use

Eq. (7) as our edge similarity measure. Fig. 6 shows

the effectiveness of the informative edge measure. While

the conventional gradient map in Fig. 6(b) fails to detect

distinctive edge responses, the informative edge map in

Fig. 6(c) captures important edge responses even under low-

light conditions.

As a sequential step, we refine every cost slice in Eq. (5)

by applying an edge-preserving filter that aggregates labels

over the monochrome guidance image IL [24]. Then

we determine a disparity map using the winner-takes-all

strategy. We reject outliers by the left-right consistency

check, which marks pixels out if the disparity of a pixel

on the left view is not consistent with the disparity of

the corresponding pixel on the right view. We add such

reliable correspondences by iteratively performing disparity

estimation and gain adjustment that will be explained in the

following section, and finally optimize the disparity map

using minimum spanning tree-based filtering [29].

5.3. Gain Adjustment

In order to locally match the intensity levels between IL
and IγR, we estimate a local gain map that adjusts brightness

of the monochrome input image IL. We achieve this by

solving a constrained linear least-squares problem.

Given two images, IL and IγR, we first divide IL into

unit blocks of 15 × 20 pixels where each block is assumed

to be a uniform disparity. Each block is assigned one

gain value, therefore we need to estimate a gain map Π =
{π1, π2, · · · , πnb

} where nb is the number of blocks. The

gain map is computed by solving the problem:

argmin
πt
ϕ

∑
ν

δν(I
γ
RL)

(
πt
νβν(IL)− βν(I

γ
RL)

)2
s.t. 0.8πt−1

ν ≤ πt
ν ≤ 1.2πt−1

ν , π0
ν =

μ(βν(I
γ
RL))

μ(βν(IL))
, (8)

where ν is a block index, βν is the set of intensities of

correspondences in a block ν, IγRL represents the aligned

image of IγR to IL with its disparity, and t is an iteration

index of the disparity estimation and gain adjustment loop.

δν(·) is an indicator function activated when the number of

correspondences in block ν is larger than three. We use the

indicator function to avoid over-fitting to outliers.

After solving Eq. (8), we estimate a dense and smooth

gain map by propagating Π to the entire image IL using the

local affinity model [21].

6. High-quality Color Image Recovery

The next step of stereo matching is merging the RGB-W

stereo image to recover a high-quality color image. This is

straightforward because monochrome cameras have better

light efficiency than color cameras as discussed in Sec. 3.

In this process, we use the Y UV colorspace, which is

composed of one luminance channel Y and two chromi-

nance channels, U and V . We directly use the monochrome

input image as the luminance channel of a recovered color

image and reconstruct its color information by combining

the chrominance channels of the color input image accord-

ing to the estimated disparity.
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(a) Initial color mapping (b) Colorization using [21]

(c) Local color consistency (d) Proposed

Figure 7. Comparison of colorization results.

Fig. 7(a) shows the reconstructed color image by this

initial color mapping. It already shows a pretty good result

thanks to our accurate disparity estimation, but there are

color bleeding errors in occluded regions and conventional

colorization [21] cannot handle the problem because the

algorithm [21] is specialized for color propagation not for

color correction (see Fig. 7(b)).

To resolve the problem, we introduce a simple but

effective weight term and modify the algorithm [21] to

correct color bleeding errors. We segment the luminance

channel into super-pixels [6] and compute the confidence

of initial chrominance mapping at the pixel i as:

wd
i = exp

( ∑
C∈{U,V }

− (Ci −medianS(Ci))
2

2σ2
C

)
, (9)

where medianS(Ci) is the median chrominance of a super

pixel containing the pixel i and σC is a control parame-

ter. Fig. 7(c) shows the confidence map computed from

Fig. 7(a).

The confidence value is used as an additional weighting

term of the colorization method [21]. Specifically, we re-

cover color-corrected chrominance channels by minimizing

an objective function defined as:

argmin
Ĉ∈{Û,V̂ }

∑
i

wd
i

(
Ĉi − Ci

)2

+λs

∑
i

∑
j∈Ni

(
Ĉi−

ws
ij

W
Ĉj

)2

,

s.t. ws
ij = exp

(
− (Yi − Yj)

2

2σ2
Ni

)
, W =

∑
j∈Ni

ws
ij ,

(10)

where λs is a balancing parameter between the data term

and the smoothness term, Ni represents the eight neighbor-

ing pixels of i, and σ2
Ni

is the variance of the luminances

in Ni. Following [21], this objective function can be

color camera monochrome camera

illum. exp. noise std. illum. exp. noise std.

Setup 1 1 0 0.03
√
κ 2 1 0.01

√
κ

Setup 2 3 0 0.07
√
κ 1 2 0.01

√
κ

Table 1. Two setups of the Middlebury stereo benchmark. We

simulate our stereo system by taking a image of a given illumi-

nation and exposure level from the Middlebury dataset. We add

additional signal dependent Gaussian noise with a given standard

deviation where κ represents the noise-free signal intensity [5]
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Figure 9. Quantitative evaluation results on the Middlebury stereo

benchmark. The experimental setup is summarized in Table 1.

efficiently solved as:

(W d + λsL)ĉ =W dc s.t. L = I −W s, (11)

where W d is a diagonal matrix consisting of the data weight

wd
p , L is a Laplacian matrix, I is an identity matrix, W s

is a matrix form of the smoothness term, and c and ĉ are

vectorized forms of C and Ĉ respectively. Fig. 7(d) shows

our colorization result in which color bleeding is recovered.

7. Experiments

We implemented our method in MATLAB and it takes

about 5 minutes to process one dataset of 1390 × 1110
resolution on an I7 3.4GHz machine. Among all the

steps, disparity estimation in Sec. 5.2 uses most of the

processing time. We expect that the computational time can

be significantly reduced using GPU parallelization.

For the evaluation, we compare our method with state-

of-the-art methods of multi-spectral or cross-channel stereo

matching; DASC [18], CCNG [15], ANCC [12] and

JDMCC [13]. For a fair comparison, we used the original
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ProposedColorMono ANCC DASC JDMCC CCNGGT

Figure 8. Comparison of estimated disparity maps under the “Setup 2” on the Middlebury Benchmark.
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Figure 10. Evaluation for each of the colorization methods.

authors’ code and chose the best performing parameters

using a parameter sweep. We used the same set of

parameters {α, τ1, τ2, σC , λs} = {0.5, 0.1, 0.1, 0.01, 3} to

generate all the results of our method. Please refer to the

supplementary material for more results and comparisons

with state-of-the-art methods.

7.1. Middlebury Stereo Benchmark

We quantitatively evaluated our method using the Mid-

dlebury stereo benchmark [14]. For realistic simulations,

we took two images captured under different illuminations

to simulate different spectral sensitivities and add additional

noise to simulate low-light conditions. To imitate the light-

efficiency difference between color and monochrome cam-

eras, we used longer exposure images as monochrome input

images, and added more noise to the color input images. We

configured two different setups for this experiment. The

details are summarized in Table 1.

Two examples of stereo matching results are shown in

Fig. 8. The quantitative comparison is presented in Fig. 9.

We use the bad pixel rate as an evaluation criterion, which

is defined as the percentage of pixels for which the absolute

disparity error is greater than 1. In this experiment, our

method largely outperformed all the competing methods

for all the test datasets. The NCC (normalized cross

correlation)-based methods [18, 15, 12] are vulnerable to

low intensity level and severe noise Fig. 9(b), as demon-

strated in [14]. The JDMCC [13] worked relatively well
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Figure 11. Quantitative evaluation using a controlled indoor scene

captured from our prototype system. The odd rows show the re-

sults with image pairs captured under bright and dark illumination

conditions, respectively. The even rows are corresponding bad

pixel error maps.

among the competing methods; however, it exhibited large

quantization errors, as shown in Fig. 8. We guess that

the absence of color information leads to failure of color

equalization of the JDMCC, and that this causes large errors

in the JDMCC results.

We also evaluated the effectiveness of our colorization

process. For the quantitative evaluation, we measure the

PSNR and SSIM of three different colorization methods:

initial color mapping with an estimated disparity map,

conventional colorization [21], and our colorization with

chrominance consistency weight. Fig. 10 shows the evalua-

tion result, and that our method outperforms the competing

methods and consistently improves colorization quality in

terms of both PSNR and SSIM. This is because the newly

proposed method corrects the color bleeding errors in out-

of-plane regions.

7.2. Experiment with our Prototype System

We implemented our prototype system using two Point-

Grey Flea3 cameras, one color and one monochrome

camera, with baseline of 5cm, and maximum disparity of

about 80 pixels. The stereo system was pre-calibrated and
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Figure 12. Comparison of disparity estimation results on outdoor scenes captured from our prototype system.

(a) Recovered image (b) Refocusing (c) Stylization

Figure 13. Applications to depth-aware image processing using

the accurate disparity map and high-quality color image of our

method. Note that the input images were captured in challenging

low-light conditions and we amplify the brightness of the results

for the visualization purpose.

images from the cameras were rectified using the MATLAB

bulit-in camera calibration toolbox.

First, we investigated performance degradation with

respect to illumination conditions. As shown in Fig. 11, we

captured the same scene under two different illuminations

in a controlled laboratory environment. For quantitative

evaluation, we also estimated a ground-truth disparity map

using a structured-light 3D scanner. Fig. 11 shows the

comparison of the estimated disparity maps with their bad

pixel rates. Compared to the competing methods, our

method achieved the best results regardless of illumination

conditions, with the least degradation of performance.

Fig. 12 shows the results of outdoor datasets captured

at night (i.e., low-light conditions). All the state-of-the-art

methods produced reasonable results; however, our method

achieved the most accurate disparity map among them while

the other methods suffered from holes and errors in dark

regions. Note that our method reconstructs both depth

discontinuities and fine structure, such as the horse stone

statue in the 1st row, and the branches in the 2nd row of

Fig. 12.

7.3. Applications to Depth-aware Image Processing

An accurate disparity map can facilitate many applica-

tions. As examples, we show photographic editing applica-

tions such as digital refocusing and image stylization.

Digital refocusing that shifts the in-focus region after

taking a photo [2, 4] is one of the most popular depth-

aware processing techniques. An accurate disparity map

is necessary to create a realistic refocused image. In

Fig. 13(b), we added synthetic blurs to the images using our

disparity estimates and produced a shallow depth of field

image.

Another emerging application is image stylization,

which changes the photographic look of an image. When

a disparity map is given, we can easily change the color

of a certain depth range and produce visually pleasing

photographic looks as shown in Fig. 13(c). Our application

results show distinctively realistic photographic effects even

in night scenes.

8. Conclusions
We have proposed a new stereo framework for high-

quality depth and color image acquisition under low-light

conditions. We achieved this by utilizing a fundamental

trade-off of the advantages of color and monochrome

cameras and validated the effectiveness of the proposed

framework through extensive quantitative and qualitative

evaluation. We expect that the proposed framework could

become popular as a robust stereo system for mobile phones

in the near future.

In this study, we found some challenges that should be

overcome, and which will be considered in future work.

First, the performance of our method is not guaranteed

for datasets with low-texture and refractive media. This is

considered a fundamental issue of stereo matching. Second,

we need to account for a narrower baseline system than

our prototype for practical utility in mobile devices. Last,

the current computational burden is another problem to be

solved.
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